Implementation of standard IEC 61439
The benefits of a standard-compliant assembly

The IEC 61439 series of standards sets out the regulations for power distribution boards as well as assemblies for power distribution in public networks, construction sites, and for prefabricated busbar trunking and cabling systems. The main objectives of the standard cover the safety of persons, the protection of equipment and property, and also the quality, reliability and durability of the investment. IEC 61439-1 defines the general rules and details the verifications to be performed to ensure compliance of the manufactured assembly.

The electrical panel not only distributes power and controls the process; it also ensures the protection of persons and property. This is why it is vital that the quality and performance of this equipment is able to deal effectively with the consequences of a defect, malfunction or total destruction could have for the operator.

IEC 61439 very precisely defines what elements are comprised in “Low voltage switchgear assemblies” as well as the procedures for ensuring the achievement of specified levels of performance. The inclusion of this standard ensures that the purchaser will receive equipment that complies to the stated requirement.

Key points:
The standard pays particular attention to:
• systematic verification of each assembly,
• documentary traceability,
• clarification of the specification requirements,
• clarification of the responsibilities and commitments of each project participant.

1. Assembly: a complete system (or combination) of electrical and mechanical elements such as enclosures, busbars, functional units, etc.

2. Original manufacturer: the organisation that has carried out the original design and associated verification of an assembly in accordance with the IEC 61439 standard.

3. Assembly manufacturer: the organisation taking the responsibility for the completed assembly. This may be a different company than the original manufacturer.
Socomec, a specialist manufacturer

Our range of products and services allows professionals working in the electricity sector to implement distribution and control gear assemblies that meet market requirements.

An original manufacturer according to standard IEC 61439

Socomec offers a wide range of original manufacturer solutions conforming to standard IEC 61439:
- the Flexys and Cadrys cabinet systems designed for distribution panel applications,
- local switching and equipment cabinets covering requirements in power availability and safety,
- components for integration.

The COFRAC-accredited Pierre Siat testing centre

With its world-class testing centre, Socomec can perform all the test verifications required by standard IEC 61439 for assemblies up to 6000 A, 100 kA rms, 690 VAC or 1200 VDC. We can therefore help you to:
- define a verification programme,
- perform conformity tests,
- obtain certified conformity via independent testing bodies (ASEFA, ASTA, DEKRA, etc.).

Socomec, your best asset

Socomec is an independent manufacturing company specialising in the availability, control and safety of low voltage electrical energy. Socomec has complete control of the design, manufacture and marketing of its products and systems. Socomec subscribes to the RESOTABLO initiative launched by the Gimélec trade association*. The approach aims at promoting respect for standards compliance and professionalism throughout the value-added chain that leads to the implementation of a high quality electrical panel.

* An association of electrical equipment and control gear manufacturers and associated services.

Find out more about the Pierre Siat testing laboratory.
One process, four phases

Each phase of the proposed process is based on the technical framework set out in IEC 61439-2. In this way, user requirements are properly taken into account as well as ensuring that the implemented assembly meets all requirements in terms of functionality and safety.

Specification phase
The purchaser should precisely specify the main characteristics of the electrical panel in its environment as soon as possible. In addition to the functional and technical specifications of the equipment, the operating context should also be specified in terms of external constraints relating to its environment, storage conditions and transport.

Design phase
When designing an assembly system, the original manufacturer should at all times comply with the requirements of IEC standard 61439-2. In this way, the manufacturer develops a fully referenced assembly system that is verified by tests, calculation/measurement or design rules. There are no fewer than 12 steps in the verification process governing the manufacture and levels of performance that should be performed during the production of an electrical panel.

Manufacturing phase
The assembly manufacturer translates and materialises the purchaser’s requirement in the form of a suitable technical solution.
The assembly manufacturer is responsible for the selection and assembly of components, and also for performing 10 routine verifications on each assembly that is produced. Finally, the manufacturer draws up the declaration of conformity report, with reference to test certificates and provides documentary traceability.

Delivery phase
An on-site verification of the essential points allows the end user to have an assembly in keeping with their requirements. An inspection report may be issued to formalise this procedure.
The verifications to be performed

1. **Strength of materials and parts**
 IEC 61439-1 § 10.2
 Verify that the assembly meets the following criteria:
 - resistance to corrosion,
 - thermal stability and resistance to normal heat and fire of insulating materials,
 - resistance to ultra-violet (UV) radiation,
 - resistance to mechanical impact,
 - durability of marking,
 - lifting and transport.

2. **Degree of protection of enclosures**
 IEC 61439-1 § 10.3
 Validate protection against direct contact with live parts, as well as protection against ingress of solid foreign objects and liquids, in accordance with IEC 60529.

3. **Clearances and creepage distances**
 IEC 61439-1 § 10.4
 Verify that the clearance and creepage distance enable the assembly to withstand the following:
 - exceptional, transient overvoltage (lightning, HV operations),
 - operating voltage and temporary overvoltage.

4. **Protection against electrical shock and integrity of protective circuits**
 IEC 61439-1 § 10.5
 Make sure that the minimum air clearance is higher than or equal to the values indicated in the following table:

<table>
<thead>
<tr>
<th>Rated impulse voltage withstand (kV)</th>
<th>Minimum clearance (mm) up to 2000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

 If this is not the case, perform a voltage impulse withstand test (dielectric properties test).

Verifying the panel conforms to the environment in which it is to be installed:
 - flatness of the mounting base or bracket,
 - sufficient space for operation, ventilation,
 - ambient temperature,
 - level of pollution,
 - dust, salt air and spray, UV, impacts and vibrations.

Verifying the degree of protection (IP) is appropriate for the environment in accordance with customer specifications, and that this will be maintained following on-site implementation.

Verifying the clearance and creepage lines defined during the design phase are respected. These should correspond to the operating and overvoltages as well as the environment.

Verifying:
 - the continuity and correct interconnections of protective conductors (or braids),
 - the correct dimensioning of protective conductors above 10 kA rms.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Original manufacturer</th>
<th>Assembly manufacturer</th>
<th>Inspector</th>
</tr>
</thead>
</table>
| 5 | Incorporation of switching devices and components | Ensure the compliance of equipment implementation in accordance with the rules of manufacture and EMC regulations, if applicable. | Ensure implementation in accordance with the component manufacturer’s specifications and instructions, including:
• compliance with security perimeters,
• compliance with rules for electrical connections, etc. | Verify:
• the implementation of the cabling specified by the manufacturer of the equipment,
• the agreed Service Index (SI),
• the correct combination of components,
• the correct equipment ratings,
• the accessibility of component indicators and operating elements. |
| 6 | Internal electrical circuits and connections | Verify the conformity of implementation and dimensioning of internal circuits and connections. The following should be carefully checked:
• short-circuit withstand strength,
• temperature-rise withstand,
• the section of the neutral conductor,
• identification of the conductors. | Verify:
• the compliance of the conductors to the original manufacturer’s specifications,
• the correct tightening of connections. | Verify:
• the section and material of the neutral and other conductors,
• the measures implemented to avoid short-circuits,
• termination points,
• compliance with tightening torques, especially the busbar connectors/fishplate. |
| 7 | Terminals for external conductors | Verify the compliance of implementation and dimensioning of the terminals for external conductors. | Verify that the number, type and identification of the terminals comply with the specifications of the assembly manufacturer. It is obligatory to indicate whether the terminals are suitable for copper or aluminium conductors, or both. | Verify:
• that the connection terminals are compatible to the section and material of the conductors,
• the recommended bend radiiuses. |
| 8 | Dielectric properties | Test each type of circuit in the assembly to ensure:
• power-frequency withstand voltage,
• impulse withstand voltage. | Via dielectric test, verify that there is no puncture or flashover between phases and exposed conducting parts, and between phase-phase. Equipment not designed to withstand the test voltage indicated in Table 1 should be disconnected. For panels of < 250 A, the properties are validated if the insulation resistance between circuits and earth under 500 V is ≥ 1000 Ω/V. | Verify if there is a dielectric test report issued by the assembly manufacturer. |
| 9 | Verification of temperature rise | Ensure:
• thermal stability of the loaded assembly,
• that the temperatures are controlled on accessible parts, connections and equipment/devices. | Respect the recommendations of the original manufacturer. | Ensure that the recommendations of the original manufacturer are followed: available volumes, position and distribution of devices, diversity factors, ambient temperature, etc. |
Implementation of standard IEC 61439 - SOCOMEC

10 Short-circuit withstand strength
IEC 61439-1 § 10.11

<table>
<thead>
<tr>
<th></th>
<th>Original manufacturer</th>
<th>Assembly manufacturer</th>
<th>Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td>In comparison to a tested reference design or by testing, verify the level of withstand assigned to the reported short-circuit current (unless excluded).</td>
<td>Follow the recommendations of the original manufacturer.</td>
<td>Carefully verify each factor that helps to ensure that the short-circuit withstand strength keeps within the correct operating range (see Table 2).</td>
<td></td>
</tr>
</tbody>
</table>

11 Electromagnetic compatibility
IEC 61439-1 § 10.12

Verify EMC requirements via tests, except if:
- the incorporated devices and components comply with ECM requirements for the environment that has been specified;
- their installation and cabling comply with the specifications of the manufacturers.

Follow the recommendations of the original manufacturer.

Verify via tests that the assembly does not generate or receive electromagnetic interference. In particular, verify the correct connection of exposed conducting parts, the earth connection, segregation of circuits and communication networks.

12 Mechanical operation
IEC 61439-1 § 10.13

Verify via tests the mechanical operation of removable parts (including any insertion locking). Enclosures, partitions and fastenings should be able to withstand the wear-and-tear of normal use and under short-circuit condition.

Verify the correct operation of mechanical control elements, locks and locking devices, including those associated with removable parts.

Ensure the manoeuvrability of functional units and the presence of associated accessories. Verify that the technical file is to hand and that it is kept up-to-date.

Table 1: Power-frequency withstand for main circuits (see Point 8: Dielectric properties)

<table>
<thead>
<tr>
<th>Rated insulation voltage U_i (in V)</th>
<th>Dielectric test voltage (in V)</th>
<th>AC (rms)</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_i \leq 60$</td>
<td>1000</td>
<td>1415</td>
<td></td>
</tr>
<tr>
<td>$60 < U_i \leq 300$</td>
<td>1500</td>
<td>2120</td>
<td></td>
</tr>
<tr>
<td>$300 < U_i \leq 690$</td>
<td>1890</td>
<td>2670</td>
<td></td>
</tr>
<tr>
<td>$690 < U_i \leq 800$</td>
<td>2000</td>
<td>2830</td>
<td></td>
</tr>
<tr>
<td>$800 < U_i \leq 1000$</td>
<td>2200</td>
<td>3110</td>
<td></td>
</tr>
<tr>
<td>$1000 < U_i \leq 1500$</td>
<td>2400</td>
<td>3560</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 (see Point 10: short-circuit withstand strength)

<table>
<thead>
<tr>
<th>Design comparison to be assessed/reference design</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icc lower or the same?</td>
<td>✓</td>
<td>C/T</td>
</tr>
<tr>
<td>Busbar and connections section higher or the same?</td>
<td>✓</td>
<td>C/T</td>
</tr>
<tr>
<td>Distance between busbar centres and connections higher or the same?</td>
<td>✓</td>
<td>C/T</td>
</tr>
<tr>
<td>Busbar supports: type, shape, identical materials and spacing (L)</td>
<td>✓</td>
<td>C/T</td>
</tr>
<tr>
<td>Identical materials (Cu, Al)</td>
<td>✓</td>
<td>C/T</td>
</tr>
<tr>
<td>Protective device: manufacture, realisation, type, positioning and identical limiting characteristics</td>
<td>✓</td>
<td>T</td>
</tr>
<tr>
<td>I_{22} and I_{pk} higher or the same</td>
<td>✓</td>
<td>T</td>
</tr>
<tr>
<td>Unprotected conductors: lower or the same</td>
<td>✓</td>
<td>C/T</td>
</tr>
<tr>
<td>Presence of an enclosure (if planned)</td>
<td>✓</td>
<td>T</td>
</tr>
<tr>
<td>Dimensions (H, L, D) at least the same</td>
<td>✓</td>
<td>T</td>
</tr>
<tr>
<td>Compartments: identical mechanical design and dimensions (H, L, D) at least the same</td>
<td>✓</td>
<td>T</td>
</tr>
</tbody>
</table>

C/T: additional verification can be performed either by calculation/measurement or by tests.
T: additional verification can only be performed by tests.

For more information

Please visit our website